Displacement Field Due to a Cylindrical Inclusion in a Thermoelastic Half-Space
Authors
Abstract:
In this paper, the closed form analytical expressions for the displacement field due to a cylindrical inclusion in a thermoelastic half-space are obtained. These expressions are derived in the context of steady-state uncoupled thermoelasticity using thermoelastic displacement potential functions. The thermal displacement field is generated due to differences in the coefficients of linear thermal expansion between a subregion and the surrounding material. Further, comparison between displacement field in a half-space and in an infinite medium has been discussed. The variation of displacement field in a half-space and its comparison with an infinite medium is also shown graphically.
similar resources
Quasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source
This paper investigates the quasi-static plane deformation of an isotropic thermoelastic half-space due to buried seismic sources and heat source. Governing equations of thermo-elasticity are solved to obtain solutions for seismic sources in a thermoelastic half-space. The general solutions are acquired with the aid of Laplace and Fourier transforms and with the use of boundary conditions. The ...
full textDeformation Due to Inclined Loads in Thermoporoelastic Half Space
The present investigation is concerned with the deformation of thermoporoelastic half space with incompressible fluid as a result of inclined load of arbitrary orientation. The inclined load is assumed to be linear combination of normal load and tangential load. The Laplace and Fourier transform technique are used to solve the problem. The concentrated force, uniformly distributed force and a m...
full textThermoelastic Vibration of Temperature-Dependent Nanobeams Due to Rectified Sine Wave Heating—A State Space Approach
In this study, the second type of Green and Naghdi's thermoelasticity theory is applied to present the vibration of a nanobeam subjected to rectified sine wave heating based upon the nonlocal thermoelasticity theory. Both Young's modulus and thermal conductivity are considered to be linear functions of the temperature. The Laplace transform domain is adopted to solve the governing partial diffe...
full textEffects of Hall Current and Rotation in Modified Couple Stress Generalized Thermoelastic Half Space due to Ramp-Type Heating
The objective is to study the deformation in a homogeneous isotropic modified couple stress thermoelastic rotating medium in the presence of Hall current and magnetic field due to a ramp-type thermal source. The generalized theories of thermoelasticity developed by Lord Shulman (L-S, 1967) and Green Lindsay (G-L, 1972) are used to investigate the problem. Laplace and Fourier transform technique...
full textanalytical solution for a transversely isotropic half-space due to torsion on the wall of a finite length cylindrical cavity
in this article, a transversely isotropic linear elastic half-space with depth wise isotropy axis of material containing a cylindrical cavity of finite length is considered to be under the effect of an arbitrary torsion force applied on the wall of the cavity. to this end, the equation of equilibrium has been written in a cylindrical coordinate system, by dividing the involved domain to two reg...
full textInternal heat source in a temperature dependent thermoelastic half space with microtemperatures
A two dimensional deformation due to internal heat source in a thermoelastic solid with microtemperatures under the dependence of modulus of elasticity and thermal conductivity on reference temperature has been studied. A mechanical force of constant magnitude is applied at the free surface of thermoelastic half space. The normal modes technique has been applied to obtain the exact expressions ...
full textMy Resources
Journal title
volume 9 issue 3
pages 445- 455
publication date 2017-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023